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Temperature measurements taken in association with the velocity measurements 
described by Gargett, Osborn & Nasmyth (1984) are examined. With careful noise 
removal the temperature dissipation spectrum is fully resolved and x, the dissipation 
rate of temperature-fluctuation variance, is determined directly. With directly 
measured values of x and c, the turbulent-kinetic-energy dissipation rate per unit 
mass, the observed temperature spectra are non-dimensionalized by Oboukov- 
Corrsin-Batchelor scaling. Shapes and levels of the resulting non-dimensional spectra 
are then examined as functions of the degree of isotropy (measured) in the underlying 
velocity field. Two limiting cases are identified: Class A, associated with isotropic 
velocity fields; and Class B, associated with velocity fields which are anisotropic 
(owing to buoyancy forces repressing vertical relative to horizontal dimensions of 
energy-containing ‘ eddies ’). The present observations suggest that the Corrsin- 
Oboukov-Batchelor theory does not provide a universal description of the spectrum 
of temperature fluctuations in water. Class A scalar spectra have neither k 3  nor k-’ 
subranges : a Batchelor-spectrum fit to the high-wavenumber roll-off region yields a 
value of 12 for the ‘universal’ constant q. In striking contrast, the buoyancy-affected 
Class B spectra exhibit a clear k 3  subrange, an approach to a k-l subrange, and a 
value of q - 4 which is in rough agreement with most previous estimates. Previous 
oceanic and atmospheric measurements are re-examined in the light of the present 
results. It is suggested that these previous results are also affected by vertical scale 
limitation. Reasons underlying the discrepancies between theories and observations 
are discussed: these may be different in the two classes presented. 

1. Introduction 
This paper is a companion to that of Gargett, Osborn & Nasmyth (1984, hereinafter 

referred to as GON) which described observations of turbulent velocity fields 
associated with various instabilities of tidal flows in Knight Inlet, British Columbia. 
Simultaneous measurements of the temperature field are described here and compared 
with theories available for the spectrum of a passive scalar in a fluid of moderate 
Prandtl number. 

A passive scalar is a fluid property which is merely advected by a fluid flow without 
affecting the dynamics of that flow : thus any theory of scalar-variance distribution 
depends upon some underlying model of the advecting flow. For a turbulent flow, 
this underlying model is invariably that of Kolmogoroff (1941) (see Monin & Yaglom 
1975 ; also GON) : here, only relations necessary for discussion of the temperature data 
will be reviewed. Briefly, Kolmogoroff proposed that for sufficiently large Reynolds 
number Re there would be found a range of wavenumbers within which the turbulent 
velocity field is isotropic and dependent only upon the molecular viscosity v and the 
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rate E a t  which kinetic energy was being transferred to dissipation scales. Thus, 
defining the one-dimensional energy spectrum $,,(k) such that 

with k the (radian) wavenumber in the direction of the streamwise velocity 
component u, : 

where F(k/k,) is a universal function, k, = (e/v3): is the Kolmogoroff wavenumber 
and 

E = 15v k2$,,(k) dk (2) JOW 
is the kinetic-energy dissipation rate per unit mass. If there exists a part of this range 
in which v is not important, then the spectrum has an inertial subrange 

$ll(k) = A ,  Q k-i, (3) 

where A ,  is a universal constant. Using the isotropic relations between axial ($,,(k)) 
and cross-component (&(k), j = 2 , 3 )  spectra 

one finds that in an inertial subrange 

&(k) = A,&k+ with A, = $4,. (5) 

Oboukov (1962) and Kolmogoroff (1962) later revised this theory to allow for 
observed intermittency in the dissipation rate E ,  which was found to be an increasing 
function of turbulent Reynolds number Re, = ( V ) t A / v ,  where A = (G/(au/ax)2)t is 
the Taylor microscale. However, reasonable approximations to the distribution of E 

suggest that the variation in second-order quantities such as the spectrum should be 
very weak (Grant, Stewart & Moilliet 1962; Yaglom 1966; Antonia & Van Atta 1975). 

For a passive scalar advected by such a turbulent field, if 8 is the deviation of a 
scalar property from its ensemble mean, then 

ZF = jOw r (k ’ )  dk’ = 5,” $(k) dk, 

where T(k’) is the three-dimensional, and $( k) the one-dimensional, scalar spectrum. 
For isotropic turbulence, these are related by 

and x, the mean rate of dissipation of scalar variance P, is given by 
r w  

= 6D J k2$(k) dk, 
0 

where D is the molecular diffusivity of the sca1ar.t The form of @(k) within a velocity 

t Definitions of @, hence x, may differ among authors, depending upon whether the scalar budget 
is written for @ (as here) or ;@: any intercomparison of experimental results must be corrected 
for this difference (Paquin & Pond 197 1 ). 
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inertial subrange, obtained from dimensional arguments similar to those used by 
Kolmogoroff, is 

with B another universal constant (Oboukov 1949; Corrsin 1951). This is called the 
inertial-convective scalar subrange. 

For a case such as that of temperature in water, which has a Prandtl number 
P r  = v / D  > 1 ,  theory relevant to the scalar spectral shape for wavenumbers above 
the inertial subrange was developed by Batchelor (1959). Briefly, Batchelor argued 
that the rate of strain y - ( e / vy  of the velocity field is approximately uniform over 
regions of linear dimensions small compared to k;' (this is of course because the 
variance of velocity shear (rate of strain) resides near the peak of the velocity- 
dissipation spectrum, at wavenumbers less than k,). For a fluid of Pr B 1 there then 
exists a range of wavenumbers which are larger than k ,  but smaller than those 
wavenumbers at which thermal diffusion becomes important, characteristically a 
wavenumber 

@ ( k )  = Bs- iXk- i ,  (9) 

which has become known as the Batchelor wavenumber. In this wavenumber range, 
k, 2 k 2 k,, a scalar-variance spectrum @ a k-l results from extension of constant- 
scalar surfaces by the least principal rate of strain 

1 € :  

q v  
y = -- (-) , q = constant, 

a process which delivers scalar variance to temperature-dissipation scales at rate x. 
Dimensional consistency then requires 

$(k )  = q X k- l ,  ( 12 )  

the so-called viscous-convective subrange of Batchelor. Expressions (9) and (12) may 
be combined to solve for k,,  the wavenumber of the intersection of inertial and 
viscous-convective subranges, in terms of the universal constants B and q and the 
Kolmogoroff wavenumber k,. Hence 

Y 

where the inequality arises through the conditions associated with Batchelor's 
physical model of the viscous-convective subrange. Batchelor (1959) also derived a 
more complete form, including the diffusive roll-off, 

r ( k )  = -& k-' exp 
Y 

for the three-dimensional spectrum at wavenumbers k > k,. The one-dimensional 
form of this spectrum (Gibson & Schwarz 1963) is given by 

@(k) = 2 d 4 B  

where 
N ( b )  = ( 2 ~ ) ?  exp ( -$b2) and b = (29.); k /k , .  

13.2 
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The study of intermittency effects on the scalar spectrum was begun by Kraichnan 
(1968). Batchelor’s model ( 1  1 )  is that of a rate of strain y which is statistically sharp 
in amplitude but which has random directions over scales large compared to kg’. 
Kraichnan used a simple example of a strain-rate distribution random in both 
amplitude and direction to  demonstrate that, for a high-Prandtl-number fluid, the 
k-’ subrange still emerges and the functional form of the diffusive roll-off survives. 
However, in the expression ( 1 1 )  for y the ‘constant’ q increases with increasing 
intermittency . 

Van Atta (1971, 1973) investigated the influence of intermittency in both E (hence 
y )  and x on the inertial subrange of the scalar spectrum for the case Pr 3 1.  He 
assumed that the distributions of E, and x,, values of E and x averaged over a volume 
of radius r ,  are both lognormal with equal variances = cfnXr = A+,u In ( L / r ) ,  
where L is some outer scale of the turbulence, and that their joint distribution is 
bivariate lognormal. The resulting slope m of the scalar inertial subrange was found 
to depend upon the parameter ,u and the correlation coefficient p ( r )  between 6, and 
Xr as 

(16) 

Arguing that I p ( r )  I < 1 can be a t  most a weakly varying function of r ,  and using 
an experimentally determined value of ,u 1: 0.5 (Wyngaard & Pao 1971 ; Gibson, 
Stegen & McConnell 1970) Van Atta found that the slope m ranges from - 1.39 for 
p = - 1 ,  through the classical value of -!$ = - 1.67 forp = +$, to -1.72 forp = + l .  
The assumed distribution of E ,  and X, also modifies the value of the ‘universal’ 
constant B to 

(17)  

m = -5+l 
3 A - P ( r ) ) .  

B‘ = B exp [$A($-p ) ] .  

With A - O( 1 )  (Antonia & Van Atta 1975), B‘ ranges from 1.74B for p = - 1 to 0.89B 
for p = + 1.  

Unfortunately, the approach used by Van Atta is not readily extended to obtain 
the scalar spectrum a t  wavenumbers beyond the inertial subrange (Antonia & Van 
Atta 1975); hence we are left without a comprehensive picture of the effect of 
intermittency for the case Pr > 1 .  

The available observational evidence for the Kolmogoroff theory of the velocity 
spectrum will not be reviewed in any detail here (see Monin & Yaglom 1975; Williams 
& Paulson 1977 ; Mestayer 1982). I n  high-Reynolds-number turbulence, axial velocity 
spectra do exhibit an ‘inertial’ subrange ((3)), with an apparently universal value 
of A ,  - 0.55. However, it has long been noticed, in association with the atmospheric- 
boundary-layer measurements which form the bulk of available observations, that 
the -5 subrange in &(k) extends to wavenumbers which are far lower than those 
which may reasonably be expected to be isotropic (i.e. far lower than O(z-l), where 
z is the distance of the sensors from the boundary). The very few studies which are 
able to check more stringent requirements of isotropy, such as (4) or ( 5 ) ,  often find 
that these are not satisfied for wavenumbers within the -5 subrange of the q411(k) 
spectrum (Weiler & Burling 1967; Mestayer 1982). The degree to which the turbulent 
velocity fields observed in Knight Inlet fulfil major requirements of Kolmogoroffs 
theory varies considerably: the results of GON will be briefly reviewed in $3 to 
provide a framework for discussion of the associated temperature measurements. 

Experimental evidence of the universal nature of the passive-scalar spectrum in 
an inertial subrange is considerably more scattered than the velocity spectral 
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measurements. Temperature spectral subranges with - $ slope have frequently been 
observed, but values of the 'universal ' constant B range from 0.35 (Gibson & Schwarz 
1963) to 1.15 (Gibson, Stegen & Williams 1970). As will become clear, much of this 
scatter may be attributed to experiments in which x had to be determined indirectly 
by curve-fitting to the low-wavenumber end of the observed spectrum. Eliminating 
such experiments leaves only three studies, all in the atmospheric boundary layer, 
which can be used to assess the universality of the inertial-convective subrange. 
Boston & Burling (1972) measured u1 and T at 4 m above a tidal mud flat during 
daytime-heating conditions, and estimated B = 0.81. Champagne et al. (1977) made 
the same measurements over a flat ploughed field and obtained B = 0.45. Measuring 
the same quantities at 2 m over a nearly level field of harvested rye grass, Williams 
& Paulson (1977) determined B = 0.50 on average, but suggested that B was an 
increasing function of Re,. These results will be discussed further in $6. 

The main purpose of the present study is to describe the spectrum of temperature 
in seawater (Pr N 7) in a case where all three components of the velocity field, as well 
as the temperature field, were resolved through dissipation scales. The setting of the 
measurements is reviewed briefly in $2, followed ($3) by a short summary of the 
associated velocity fields: further details may be found in GON. A description of the 
temperature-measurement technique is found in $4 and the Appendix, along with a 
discussion of error in the estimates of 6, x and buoyancy frequency N = - gp;' applaz, 
this last an essential parameter for stratified flows. In $5 observed temperature 
spectra are examined in the light of the theoretical framework outlined above. 
Section 6 discusses various possible reasons for the inadequacy of this framework. 

2. Setting of measurements 
Measurements were taken on 16-21 November 1978 from the research submersible 

PISCES IV operating in Knight Inlet. A fjord on the mainland coast of British 
Columbia, Knight Inlet is divided into two basins by a 60 m-deep sill over which 
semi-diurnal tides move a water column strongly stratified by freshwater input to 
the surface layer. A t  the time of observations, the buoyancy frequency N ranged from - 0.01 rad s-l ( -  6 c.p.h.) at a depth of - 30 m to values in excess of 0.03 rad s-l 
( - 20 c.p.h.) very near the surface. Despite the strong (by oceanic standards) stratifi- 
cation, tidal energy is often sufficient to generate turbulence through any of a variety 
of internal hydraulic mechanisms (Farmer & Smith 1980). 

In November 1978 ebb-tidal flows produced a stationary lee wavetrain and a 
turbulent separated boundary layer downstream of the sill, both seen in the 200 kHz 
echo-sounder record of figure 1(c). The path of submersible measurements on 
November 21 (data tapes 837-839) in the far field of the separated boundary layer 
is shown to the west of the sill in the map of figure 1 (a) : no measurements were taken 
in the stronger turbulence near the sill owing to the danger of running probes (and 
submersible) into the ridge. As the tidal flow reversed to flood, the lee wavetrain 
separated from the sill and moved up-inlet ( -  east). As it propagated, the leading 
waves increased in amplitude and eventually developed intense turbulence in their 
troughs, while additional waves formed and grew behind them. The echo-sounding 
of figure 1 (b) shows such a wave group as observed with its leading edge in the vicinity 
of Station 5 in figure 1 (a). Measurements were taken through various parts of the 
flood-tide wavetrain on several consecutive days. Approximate dive tracks are shown 
in figure 1 (a), identified by date. This report uses data from dives on 15 November 
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Knight Inlet, B.C. t :  Irm 

FIQURE 1 (from Gargett, Osborn & Nasmyth 1984). (a) Plan section of a portion of Knight Inlet, 
showing the location of the sill which divides the inlet into two basins. Turbulence measurements 
were takenfrom the submersible PISCES IV during the week of 15-22 November 1978. Submersible 
tracks are identified by date. Marked stations (W and 0-5) are locations of CTD profiles. (b, c) The 
two flow regimes in which measurements were taken are shown here (courtesy of David Farmer) 
in records from a 200 kHz echo-sounder operated during the week of turbulence measurements 
(horizontal scales are approximate): (b) measurements east of the sill were taken in an internal 
wavetrain released from the sill on the turn to flood tide; (c) to the west of the sill, measurements 
were taken in separated flow which occurs downstream of the sill on ebb tide. 

(data tape 822) through the leading waves, 16 November (data tapes 823-825) 
through the leading waves and the undisturbed waters up-inlet of the wave group, 
and 19 November (data tape 831) in the far field of the wavetrain. 

Measurements are referred to a coordinate system xi (i = 1,2 ,3)  attached to the 
submersible, a (moving) geographic coordinate system with x1 taken in the direction 
of travel and x3 vertically upwards (GON, figure 4 and $3.2). High-frequency 
velocities were measured by a heated-film probe (ul) and two orthogonal airfoil probes 
(uz, u3), low-frequency velocity components U, (i = 1,2 ,3)  by a triplet of small ducted 
rotors. High-frequency temperature 2" was sensed by a cold-film probe and low- 
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frequency temperature T by a thermistor. Auxiliary sensors included a second 
thermistor TB for temperature difference T,-T = AT over 0.8 m vertically, a 
pressure gauge, and three accelerometers. A complete description of the combined 
sensor-vehicle system is found in Gargett (1981)  while analog traces of the data 
collected on PISCES are shown in figures 5 ( a )  and 5 (b) of GON for many of the records 
used in this paper. 

3. The velocity field 
While the theory of Kolmogoroff was proposed for turbulence in a homogeneous 

environment, i t  may be expected to apply to stratified systems provided attention 
is restricted to scales smaller than the scale at which stable stratification inhibits 
overturning. Since the buoyancy wavenumber k,  = ( P / B ) ~  has long been associated 
with such a maximum overturning scale (Dougherty 1961 ; Ozmidov 1965) GON 
attempted to classify the velocity spectra measured in Knight Inlet as a function of 
the parameter I = k,/k, .  This isotropy parameter, a measure of the separation 
between energy-containing and dissipation scales in a stratified fluid (hence the 
amount of 'room' in wavenumber space for development of an inertial subrange), 
worked well as a basis for classification. The highest observed values of 1 - O(3000) 
were associated with velocity spectra which all exhibited distinct - %-subranges and 
in addition satisfied relation (4) over most of the range of observed wavenumbers. 
In this paper these will be called Class A spectra: the +!-moment spectra of the axial 
component ($,,) and the vertical cross-component ($,,) are shown in figure 2, 
averaged over the five Class A records used in subsequent discussion. The spectra are 
plot,ted in the non-dimensional form 4 = $/(w5): as a function of non-dimensional 
wavenumber L = k /k , ,  where k, = (e/v3): is calculated using the record-averaged 
value of B (table 1 ) .  Levels corresponding to values of 0.55 and 0.60 for the 
Kolmogoroff constant A, are shown on both spectra. These Class A spectra have an 
inertial subrange, in the sense of relation (5 ) ,  over the range - 2.4 2: log f Z - 1 before 
rolling off with universal shapes at  dissipation scales. 

As measured I decreases, the $11 spectrum maintains a k 3  subrange and the 
universal level of the Class A spectra, while both cross-component spectra develop 
a distinct k-l subrange. This k-' subrange is not universal, in a Kolmogoroff sense, 
in either level or extent. Rather, it is associated with the fact that the fluid is 
stratified, since i t  collapses to a constant level when non-dimensionalized with 
buoyant-turbulence parameters k, and ub = ( e /N) i  (see GON, $ 6 ) .  The high- 
wavenumber end of the k-' range occurs at k N 10k,. At the higher wavenumbers 
typical of the velocity-dissipation scales the velocity spectra continue to achieve the 
universal Kolmogoroff shapes and to satisfy relation (4). 

spectrum finally begins to fall below the universal curve, most seriously at the lowest 
wavenumbers. The k-' range of $,, now covers at least the decade between 
- 2 < log L < - 1 (at lower wavenumbers the measurements fall to the system noise 
level). Class-averaged values of Class B velocity spectra are also shown in figure 2. 
Note that, within the variance error limits, scales contributing substantially to the 
dissipation (i.e. within the decade below log f = 0) still follow universal curves when 
normalized by Kolmogoroff scales. 

It should be noted that the Class B spectra represent a limit of measurement 
technique, not necessarily of the turbulent spectral shapes. However, further increase 
of anisotropy within the dissipation range will affect ability to estimate the 

By the lowest meagured values of I - 50-100 (Class B spectra), even the 
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I I I I I I 
- 4  - 3  - 2  - 1  0 

FIQURE 2. Axial (ul) a n d  vertical (uI) cross-component spectra are non-dimensio9alized by the 
Kolmogoroff scaling $ = $/(sv5)’ and plotted here as the +$-moment spectrum B$ as a function 
of e = k/k,, where k, = (E /v?) :  is the Kolmogoroff wavenumber. A flat region in this plot indicates 
an inertial (k-k) subrange in the velocity spectrum. The solid and open circles are class-averaged 
values for records termed Class A and B, respectively, each class consisting of five independent 
records of varying length. Variance error bars are shown as solid and light lines respectively. Class A 
records are characterized by inertial subranges in both component spectra, with a value of the 
Kolmogoroff constant A between 0.55 and 0.60 (levels indicated). The Class B records maintain 
an ‘inertial’ subrange in the u1 spectrum, but the vertical velocity spectrum now falls approximately 
as k1 ( 6 6  in this representation) over at least a decade before the diffusive rolloff at the highest 
wavenumbers. 

log f 

fundamental parameter 6 from a single velocity-component measurement, hence 
make it difficult to test for any continuing degree of universality during further decay 
of the velocity field. 

Two other results will be used in subsequent discussions. First, GON found that 
for those velocity fields which showed evidence of the influence of buoyancy, including 
of course the Class B records, a typical velocity variance was (q) ‘v U! = E / N .  For 
the Class A spectra i t  was not possible to estimate (3) directly from measurements : 
extrapolating the measured spectral slope back to k N ik, (as used for the direct 
calculations of the buoyancy-affected records) gave (3) N (2-3)~:. For Class A 
records the cross-component variances 2 N - q, while for Class B records 2 N q 
and N 0.63.  Secondly, a vertical overturning scale of 1, - &,, where 1, = 2x/k,, 
was estimated from a number of constraints on the observational data. It was argued 
that this value of 1, is consistent with other recent results from the laboratory 
(Stillinger, Helland & Van Atta 1983) and the ocean (Gargett et al. 1981). Crawford 
(1985) has recently demonstrated that it is also consistent with the oceanic results 
of Dillon (1982). 
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E X N k, 
Record m2 s - ~  (°C)2s-1 rads-' rad m-l Z Re, CX r 

Class A 
- - V 822-1-1030-74 2.8 1.3 lo-' (10) - 1740 - - 

0 822-1-2975-126 9.9 lop6 9.1 (30) - 1300 - 
0 825-2-2350-48 1.8 lo-' 4.5 lo-' (16) 1.9 lo-' 1500 2500 (2-3) x 710 2.4 104 0.21 

- - - 

0 825-2-2725-73 2.1 lo-' 4.2 (8) 1.6 1600 3600 (2-3) x 910 5.0 lo* 0.25 
A 825-2-3150-40 3.8 lo-' 6.0 (21) 2.0 lop2 1900 4000 (2-3) x 980 2.5 lo4 0.12 

0 831-1-3925-163 1.3 2.5 lo-' (2) 2.2 800 270 170 2.0 lo3 0.31 
0 831-2-400-122 2.2 lo-' 4.7 (14) 2.2 490 70 70 4.0 lo2 0.34 
0 831-2-2355-11 4.1 2.1 lo-' (16) 4.2 740 190 160 1.3 lo3 0.23 
A 837-2-4100-61 9.7 lo-' 2.5 (16) 2.4 1100 250 130 1.4 lo3 0.35 
V 839-1-700-126 2.6 lo-' 6.6 lo-' (18) 1.9 300 20 30 8.2 10' 0.41 

TABLE 1 .  Parameters associated with individual records, grouped by class (the symbol to the left 
of the record identification is that used in figure 5). Records are identified by Tape number - File 
number-Starting record number-M, where M is the number of Fourier blocks averaged 
(M10.976 = record length in metres). The fundamental scaling parameters E ,  x and N are derived 
from measurements, as described in the text, $53 and 4. k, = ( s / v 3 ) t  is the Kolmogoroff wavenumber 
(v = 1.48 x mz s-l). The isotropy ratio Z 3 k, /k , ,  where k, = ( P / e ) a  is the buoyancy wave- 
number. Re, is the turbulent Reynolds number ($ l ) ,  calculated with (u2) - u: = E/N (the factor of 
2-3 in the Class A records is an estimate only ($3); the (implicit) factor of 1 in the Class B records 
is better determined). The Cox number is here defined as C z  3 (aT/ax)2/(aT/az)2 and calculated 
(with the assumption of temperature dissipation-scale isotropy) as Cx = X / G D ( A T / A ~ ) ~ ,  using 
measured values of x and ATlAz ,  with D = 1.39 x lo-' m2 s-l. r = [/pot is the ratio of the 
dissipation rate E; of available potential energy to that of kinetic energy. E; is estimated from the 
relation E; = gp&?m-'--a)(&) (IAT/Azl)- l ,  where g is the acceleration of gravity, po is average 
seawater density, m is the local T / S  slope, j? = p o l  appla8 and a = -po l  ap /aT:  the factor 2 enters 
because x as used here is the dissipation rate of (T')2, while the dissipation rate of available potential 
energy is proportional to im. Note that this expression assumes that the T / S  relation is 
scale-invariant . 

Class B 

4. Temperature-field measurements 
The measured temperature spectrum is a composite of the output of an unheated 

platinum film probe at high frequencies and a thermistor (at the same level, 
approximately 0.2 m behind the cold film) at low frequencies. Details of the cold-film 
probe, circuit and calibration techniques for both gain and frequency response are 
given in the Appendix. Here I will discuss only the effective noise level of measured 
temperature spectra, and the errors in derived quantities such as x, E and N which 
are used to non-dimensionalize and/or classify results. 

Temperature data selected for analysis had to satisfy a number of criteria. First, 
the associated velocity data had to be complete and of high quality (conditions given 
by GON, $3.4). In addition, chart records of velocity and temperature signals a t  
frequencies above - 1 Hz were examined to select fairly uniform stretches of record : 
no obvious changes in mean-square variances were allowed. This requirement was 
the fundamental limitation on record length. In a further attempt to select only 
samples which are as homogeneous as possible in an environment which was certainly 
inhomogeneous in large-scale temperature, I have used only records in which spectra 
from two thermistors 0.8 m vertically apart are statistically indistinguishable. The 
cold-film record is broken into blocks of 1024 points: with a 1000 Hz sample rate, 
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the spectrum is resolved to 0.976 Hz. The thermistor record, sampled at 25 Hz, is 
used to extend the spectrum to lower frequencies from a region of overlap between 
f - 1 Hz and 5 Hz. The lowest frequency used is fL 2 2/T, where T is the total 
available record length, so that the lowest-frequency estimate has a minimum of two 
degrees of freedom owing to block averaging. Each signal block is first-differenced 
and cosine-tapered (10 yo) before Fourier transforming, then resulting spectra are 
averaged over the number M of blocks available. The block-averaged spectrum is 
corrected for first-differencing and loss of variance owing to the cosine taper, then 
band-averaged in frequency with logarithmically increasing bandwidth. Corrections 
for system gains and (cold-film) response functions finally yield signal spectra. Each 
such record is identified by (Tape number - File number - Starting record number - 
M), where M is the number of degrees of freedom of the cold-film estimate at 
f = 0.976 Hz. Since the mean speed u - 1 .O m s-l, (M10.976) x record length in 
metres. The mean speed 0 is used to convert from frequency to wavenumber, 
invoking the frozen-field hypothesis of Taylor (see GON, $3.4). 

A typical spectrum decreases with frequency, then starts to rolloff more rapidly 
before rising again at  the highest frequencies recorded. This rise, due to electrical 
noise, shows very little change over an ensemble of ‘noise-level’ spectra (chosen as 
the lowest signal levels observed over the week of measurements), as can be seen in 
figure 3 (a). In these records, the substantial variation apparent at low frequencies 
reflects differing environments : only 825-2-5200-40 comes from quiescent waters in 
front of the internal wavetrain: the remainder come from the far field of either the 
wavetrain (16 and 19 November) or the separated boundary layer (21 November), 
and hence contain residual signal variance. However, for f > 100 Hz, all these spectra 
lie within the narrow limits shown, suggesting that high-frequency-noise correction 
may be accomplished by subtracting a noise-level spectrum. An example of this 
technique, using 825-2-5200-40 as a standard noise spectrum, is shown in figure 3 (b) : 
corrected values (open circles) are generally non-zero to frequencies well beyond the 
peak of the temperature dissipation spectrum k21C. (figure 4), which is integrated to 
provide an (isotropic) estimate of x. For records taken on 21 November, when noise 
levels appear to be consistently lower than on 16 or 19 November (see record 
837-2-4550-107 in figure 3(a), use of 825-2-5200-40 as a noise level will slightly 
underestimate x (for the record 838-1-220-90 of figure 4, the difference is -7.6% 
in x):  it nevertheless seemed more conservative to remove consistently the highest 
observed noise level. A further correction to x must be made because not all records 
resolve the entire dissipation range (although all records used in this paper clearly 
resolve the peak of the dissipation spectrum). This correction was done by extending 
an observed dissipation spectrum smoothly to zero, as shown by the dashed parts 
of the curves in figure 4, then determining the area under this completed curve. 
Maximum correction due to this effect was an increase of 30 yo ; more typically, x 
values were corrected by - 15 yo. In table 1,  a compilation of relevant parameters 
for all records used in this paper, the percent correction applied to x owing to 
inadequate resolution is given in brackets behind the x value. 

The absolute accuracy of the X-estimate obtained by using the measured variance 
(i3T/i3x)2 in the isotropic formula (8) depends upon the accuracies of measured @ at 
wavenumbers which contribute significantly to the gradient variance, of Taylor’s 
hypothesis in high-intensity turbulence, and of the underlying assumption of 
isotropy. For the first, a maximum error of - &6yo may be expected, based on the 
estimated error associated with error in the cold-film response parameter A a t  
frequencies near 500 Hz (see Appendix). The question of error associated with 
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FIGURE 4. The maximum effect of noise-level choice on x is illustrated in this variance-preserving 
plot of the temperature variance dissipation spectrum (x is proportional to the area under this 
curve). Record 838-1 -220-90 is shown corrected (dark circles) by the standard noise record 
825-2-5200-40 and (open circles) by the alternate record 837-2-4550-107 which might be more 
appropriate: the resulting difference in x is - 7.6%. This figure also illustrates the extrapolation 
(dashed) used to complete the dissipation curve. The value of x reported in table 1 is obtained by 
integration of the completed curve: the value in brackets after the x value is the percentage of the 
value of x which i s  associated with the area under the extrapolated portion of the dissipation curve. 

Taylor's hypothesis was addressed by Champagne et al. (1977), who extended a model 
due to  Heskestad (1965) to  a scalar and concluded that x is overestimated by a 
fraction 

For the most highly turbulent (Class A) records, the energy-containing scales of the 
turbulence lie at scales comparable to or greater than the length of PISCES, so that 
the turbulent-velocity variances involved in (18) can only be estimated. One estimate 
(described in $3) uses 2 - 2 - ui - (2-3) ug : with U - 1 m s-l, E - 2 x m2 s - ~  
and N - 2 x lop2 s-l, this suggests that x would be overestimated by a maximum 
of - 1 %. A second estimate is obtained from the magnitude of the largest-scale 
velocity fluctuations observed in the Class A records: using 2 - (0.10 m s-')~, the 
error is an overestimate of - 3 %. 

The degree of error associated with the assumption of isotropy for the dissipation 
scales of the temperature field is unknown. For the Pr % 1 case i t  can be argued that, 
provided the velocity field achieves isotropy by its dissipation scales, there is no 
reason to expect anistropy of the temperature field at its dissipation scales, since these 
are even smaller. This argument becomes progressively weaker as the Prandtl number 
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decreases: indeed Mestayer (1980), working in a laboratory flow at Pr N 0.7, provides 
evidence that the temperature field is anisotropic down to scales as small as 3k;'. 
Lacking laboratory measurements at Pr - 7 comparable to those of Mestayer a t  
Pr - 0.7, there is no choice but to use the isotropic form for x, even though it is not 
clear whether Pr - 7 should be considered 'large' or not. 

Before leaving the question of isotropy, i t  should be noted that the PISCES 
measurement is of (3T'/az)2. Thus in extremely anisotropic conditions 
(aT' /3z)2 B (~!P'/az)z which might be imagined to occur as turbulence decays in a 
stratified fluid, the true value of x would be severely underestimated by the value 
calculated from x = 6D(3T'/a~)~. 

Accuracy of the other parameters used to scale the temperature spectra is also of 
concern. The turbulent-kinetic-energy-dissipation rate per unit mass E is estimated 
as 

E = 15v k2@,,(k)dk, (19) s," 
using the completely resolved dissipation spectrum of the streamwise velocity 
component u,, with v = 1.44 x m2 s-l the kinematic viscosity of seawater for the 
temperature conditions in Knight Inlet. Since the assumption of velocity-dissipation- 
scale isotropy used in (19) is strongly supported by the observed cross-component 
spectra (GON), uncertainty in E results only from measurement error and use of the 
Taylor hypothesis. Measurement error is due mainly to uncertainty in the probe 
response function at frequencies (wavenumbers) near the peak of the dissipation 
spectrum. Maximum error of - +6 yo occurs for values of E - 3 x mP2 sP3 
characteristic of Class A spectra, when k, is associated withf - 280 Hz. For the lowest 
Class B spectra, where B - 3 x lo-* m2 sP3 and k, is associated with f - 50 Hz, the 
error is only - f 1 % (Gargett 1980). The effect of Taylor's hypothesis, estimated 
independently by Lumley (1965) and Heskestad (1965), is to overestimate E by the 
fraction ($/u2) + 2(ui+u3/( g)2. Using again the two means of estimating velocity- 
fluctuation variances (see discussion of x above), the error in E is - 1.5% for 
u: - (2-3) ut and - 5 % for 

Another essential parameter for describing turbulence in a stratified fluid is the 
buoyancy frequency. Estimates of N were derived from an observed temperature 
difference AT over 0.8m in the vertical, using the local T / S  relation. Error was 
estimated as 5-11 yo over the (high-to-low) observed range of N (GON, $3.3). 

- -  

- - (0.1 m s - , ) ~ .  

5. Results 
The range of measured temperature spectra lies between two extremes, associated 

with either Class A or Class B velocity spectra as defined in $3. Intermediate forms 
are observed, but i t  seems sufficient to present these two very clearly different classes. 
For comparison with theory $ is non-dimensionalized by 

and plotted as a function of & = k/k,, using observed values of E and x (table 1) .  
Observed spectra are presented in various plots designed to examine three questions : 
( 1 )  does $ exhibit a &-! inertial subrange characterized by a universal value of B ?  
(2) does $ exhibit a k1 viscous-convective subrange? and (3) is Batchelor's q a 
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universal constant? Individual records used in each class are plotted as moments 
in figure 5: since each contains 5 records, for clarity the classes have been shifted 
vertically by a decade. 

5.1. Inertial subrange ? 

The class-averaged 9-moment spectra are plotted in figure 6 within variance error 
limits for the 5 records in each class. A horizontal region in such a plot indicates an 
inertial subrange where 6 - kd. Variability in the measured spectra is greatest at 
the lowest wavenumbers, where the error bounds for the two spectra marginally 
overlap. For wavenumbers E > lop3, however, the two classes are totally disjoint 
(except of course where they cross near k = 1 because the Class A spectrum rolls off 
sooner than the Class B spectrum). It is clear that over the range - 4 < log i% < - 1 
the measured Class A spectrum is not well described by 6 9 ,  but by a slightly shallower 
slope, say k3. There may be a tendency to approach horizontal, hence &+ a t  the lowest 
wavenumbers, but the spectra do not extend to sufficiently small wavenumbers to 
show this behaviour conclusively. The Class B spectrum shows a very clear 
- %-subrange over approximately the decade - 3 < log L < - 2. Even if one were to 
argue for approach to a -9-range at the lowest measured wavenumbers of the Class 
A spectrum, it is obvious that B is not a universal constant. Averages of B over the 
regions within square brackets on each spectrum in this figure are 1.6 for Class A and 
0.35 for Class B. 

It seems most unlikely that this variation in B can be explained by errors in 
calculated values of 8 or x. Indeed, since the Class A and B records are quite disjoint 
at those wavenumbers that might be imagined to make up k3 subranges, random 
error cannot be an explanation and we need only examine the magnitudes of the 
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FIQURE 6. Class-averaged values of the %-moment spectra shown in figure 5, with variance error 
bars. Note that the Class A spectrum, associated with velocity spectra which fulfil rather stringent 
conditionsfor isotropy over the range - 3 < log % < - 1, does not have aclear-cut inertial-convective 
subrange. An appropriate description would appear to be approximately @ ,.. k-i over the range 
-4  < logk < - 1, although some slight flattening in the &moment spectrum at the lowest 
wavenumbers might be an approach to k - f .  In contrast, the Class B spectrum has a very distinct 
k-3 subrange between -3 < log% < -2, where the associated velocity spectra do not fulfil isotropic 
conditions. If one wished to fit k4 to both spectra (over the limited wavenumber ranges between 
square brackets, for example), values of the Oboukov-Corrsin ‘constant’ B would range from 1.6 
(Class A) to 0.35 (Class B). 

various systematic errors which have been identified. Overestimation of both 8 and 
x by Taylor’s hypothesis partially balances in the scaling factor d x-’ which occurs 
in (20); the resulting overestimation of B is only - 1 % for the Class A spectra. 
Anisotropy effects are the other possible candidate for systematic error in B or x. Since 
various consequences of isotropy have been directly checked for the dissipation scales 
of the velocity field, B is unlikely to be substantially in error from this effect. While 
i t  is not possible to check the isotropy of the temperature field directly from the 
submersible measurements, results of laboratory experiments (Lange 1982 ; Stillinger, 
Hellend & Van Atta 1983) suggest that the temperature field is most anisotropic 
during the final stages of decay, a situation surely more similar to the present 
Class B (in which the velocity field at  least is known to have developed anisotropy) 
than to Class A. As mentioned in the previous section, this implies that x for Class B 
might be severely underestimated by our measurement, hence that the non- 
dimensionalized level of the Class B spectra should be even lower. Clearly neither 
of these effects eliminates the difference in low-wavenumber levels (hence B values) 
shown in figure 6. 

5.2. Viscous-convective subrange ? 

The class-averaged first-moment spectra are shown in figure 7: a L-8 range appears 
on this plot as a k-g range (lines are drawn using the B-values quoted above), while 
a k1 viscous-convective subrange would appear flat. The Class A spectrum clearly 
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- 4  - 3  - 2  - I  0 

FIGURE 7. The first-moment spectrum k+l$ plotted as a function of k reveals a viscous-convective 
subrange $ - k1 as a flat region. The Class A spectrum clearly has no such region, while the 
Class B spectrum may be developing one at wavenumbers between ,$ - and the diffusive 
high-wavenumber rolloff. This plot, in which an inertial-convective subrange would appear as a 
line of slope -t, again indicates that this is an inappropriate description of the Class A spectrum. 

log E; 

does not have a &-' subrange. A tendency towards &-' develops for non-dimensional 
wavenumbers above & - lop2, but even the Class B spectrum cannot be said to 
exhibit a true 4-l subrange over any substantial range of &. 

5.3. Universal diffusive cut-off? 

Variance-preserving plots of dissipation spectra &2$ as a function of I$, shown in 
figure 8 (a ) ,  clearly demonstrate that  the form of the diffusive cutoff (hence Batchelor's 
parameter q )  cannot be considered universal. To fit the observed spectra by a 
Batchelor-type function ((15)) in the rolloff region past the peak of the dissipation 
spectrum, one would need to  use q N 12 for Class A, but only q N 4 for Class B records 
(figure 8 b ) .  

One might question this conclusion if i t  depended entirely upon the observations 
at the very highest observed wavenumbers, since these are sensitive to the noise- 
correction procedure used: however, this is not the case. The noise correction is 
completely negligible for wavenumbers less than 0.3&, and here the observed 
dissipation spectra are distinctly different. Because the integral under the non- 
dimensional dissipation spectrum must equal iPr, the fact that  the observed Class A 
spectrum lies above the Class B spectrum at low wavenumbers ensures that i t  must 
eventually fall below the Class B spectrum a t  high wavenumbers. I n  Batchelor's 
terms, this more rapid high-wavenumber rolloff is characterized by a larger q. 

Another effect which can be eliminated as a cause of the observed difference in q 
is that of fluctuating convection velocity. Fitting the Batchelor high-wavenumber 
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FIGURE 8. (a) Variance-preserving plots of the temperature-variance dissipation spectra k2$ for the 
two classes show that the temperature spectrum is not even universal a t  the highest wavenumbers 
of the diffusive rolloff region. (a) In terms of the theory of Batchelor (1959), the difference can 
be expressed as non-universality of the constant q which enters the definition of the least principal 
rate of strain y = -q-’(e/v)i presumed to act on temperature-gradient surfaces. The heavy curves 
in this figure are curves generated from (15) using values of q = 12 (Class A) and q = 4 (Class B). 

form exp (Dy-lk2) = exp (Dy-lw2( U)-2) using U = U+u, instead of (where 
u1 - 0 . lU  at maximum: see §4), could change the effective y ,  hence p, by &20%, 
but this is far short of the actual observed differences. 

6. Discussion 
Previous observations of the spectrum of temperature in water (Pr - 7) have 

produced a composite of the features expected of the spectrum of e passive scalar 
at high Reynolds and Prandtl numbers. These features, with some of the studies taken 
as confirmation, are: 

(i) a k-t inertiel-convective subrange with the ‘universal constant ’ B - 0.55 a weak 
function of Re, (Gibson k Schwartz 1963, hereinafter GS; Grant et al. 1968, 
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hereinafter GHVM; Boston & Burling 1972, hereinafter BB; Champagne et al. 1977, 
hereinafter CFLW; Williams & Paulson 1977, hereinafter WP), followed a t  higher 
wavenumbers by 

(ii) a rise to a k-l viscous-convective subrange (GS, GHVM), then finally by 
(iii) a diffusive rolloff region characterized by a value q - 4 in the shape (15) 

proposed by Batchelor (Dillon & Caldwell 1980; Oakey 1982). 
For brevity, I will call this composite the Batchelor spectrum, although of course the 
inertial-convective subrange pre-dates Batchelor ( 1959). 

The present observations combine two features not achieved simultaneously by 
previous measurements: determination of E and x by direct integration of the 
respective dissipation spectra ; and the ability to check requirements of velocity-field 
isotropy, such as (4) and (5), which are more stringent than the mere existence of a 
k-1 subrange in the streamwise-velocity-component spectrum. The results of these 
observations are surprising to say the least. The Class A records have the highest 
values of Re, have energy-containing scales on average three thousand times larger 
than the length 1, = 27c/k, associated with the Kolmogoroff wavenumber, and fulfil 
condition (4) for velocity-field isotropy over almost the entire measured range of 
wavenumbers : however, the associated temperature spectra have none of the 
characteristics usually attributed to the Batchelor spectrum. Instead of distinct 
subranges with slopes of -5 and - 1 ,  the Class A temperature spectra have a subrange 
of intermediate slope ( -  - t )  which extends to  a dissipative roll-off range which is 
characterized by a value q - 12 if Batchelor’s form (15)  is fitted a t  the highest 
wavenumbers. Even more curiously, all of the elements of the Batchelor spectrum 
appear to develop as the field evolves to Class B, cases where the velocity field has 
certainly developed measurable anisotropy a t  wavenumbers within the pseudo- 
‘ inertial-convective ’ subrange of the scalar spectrum. Moreover, the vertical energy- 
containing wavenumber k, is constrained by buoyancy to a range of k,/(50-100): 
since the velocity-dissipation spectrum begins to rise steeply past kJ100, it  is clear 
that there can be no large separation between energy-input and dissipation scales as 
required for the notion of a three-dimensional turbulent energy cascade. 

These results suggest the following conclusions. First, there is no universal 
inertial-convective subrange : in the present observations, the high-Reynolds-number 
shape of the passive-scalar spectrum appears to  be approximately k-g rather than 
k-8. Secondly, a pseudo-k-g subrange appears and persists (while moving to  lower 
non-dimensional level, hence lower ‘B  ’-value) as the smallest dimension of the 
energy-containing eddies (here the vertical dimension) approaches a scale - 1,/100 
typical of the low-wavenumber end of the velocity-dissipation spectrum. Thirdly, 
during this evolution of the k-5 subrange, the slope of the temperature spectrum above 
approximately 2 N 0.01 (but below the abrupt viscous-diffusive rolloff) evolves from 
approximately k-; towards k-’. Finally, the high-wavenumber rolloff of the 
temperature spectrum is no more universal than the low-wavenumber end. 

Since these conclusions are startling in view of the widespread acceptance of the 
Batchelor spectrum as an appropriate fit to  the spectrum of temperature fluctuations 
in water, it seems necessary to review the previous observational basis of that 
acceptance in view of the framework provided by the present observations. It must 
be immediately clear from the results shown in $5 that an acceptable determination 
of the various slopes, shapes and levels involved in the Batchelor spectrum must at 
an absolute minimum determine both e and x simultaneously and directly, rather than 
by adjusting measured low-wavenumber spectral levels to fit ‘universal ’ curves (a 
procedure which of course assumes rather than tests the universal nature of the 
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curves). This requirement eliminates one of the classical references in the field, since 
GHVM were unable to determine x directly because of electronic noise in their cold-film 
circuit, hence used the fit of the Batchelor spectrum at low wavenumber to 
determine 2. Without independent knowledge of x, this procedure forces B (their 8,) 
to be approximately constant: their determinations range from 0.13 to 0.47, a 
difference of a factor of - 4. Given the framework of the present observations, forcing 
B to be approximately constant should result in considerably more variation in other 
fitted parameters of the Batchelor spectrum. Indeed, GHVM fitted values of k*/k,, 
where k, is the wavenumber of the intersection of k-% and k-' subranges, and found 
values varying by a factor of - 7, while fitted values of q varied by a factor of - 18. 
Although the Discovery-Passage measurements have long been considered a case of 
high Reynolds number (based upon tidal velocity and depth of the channel, 
Re - 3 x lo*), most of the reported temperature spectra were taken outside Discovery 
Passage itself. Given the temperature and salinity stratification reported for the 
region outside the Passage (their figure 2), indicating a salinity change of - 67&, and 
a temperature change of - 6 "C over the top 25 m within which all the reported runs 
were made, it seems possible that mean stratification sufficient to restrict vertical 
scales was present even after a full ebb/flood cycle in the area. In  the additional 
offshore measurements presented, GHVM point out characteristics of the observed 
velocity spectra which suggest low Reynolds number. If all the measurements of 
GHVM were characterized by vertical scale limitation, then their observations of -! 
and approximate - 1 subranges would be consistent with the present Class B spectra. 

The other set of observations frequently used to demonstrate k 2  and k-' scalar 
subranges, and to determine values for B and q, is the laboratory grid-turbulence data 
of GS. Here, dissipation rates E and x (or xs, the salinity-fluctuation dissipation rate, 
depending upon whether Tor S was used as a stratifying property) were determined 
indirectly by differentiating observed linear-decay laws for velocity or scalar variance 
with distance from the grid. These rates satisfactorily collapsed the streamwise 
velocity spectrum $',(k) to a universal high-wavenumber shape, with an apparent 
inertial subrange which increased in length towards low wavenumbers with increase 
in grid Reynolds number: the maximum observed extent of this subrange was 
approximately one decade, equivalent to the present Class B (figure 2). The addition 
of x (or 2,) collapsed the observed scalar spectra to 'universal' forms: however, in 
this case it seems quite probable that the observed k-0 and approximation of k-' 
subranges observed in those parts of the scalar spectra which were resolved, both 
result from vertical scale limitation. Using the height h = 6 inches ( -  15 cm) of the 
laboratory test section to form a minimum possible vertical wavenumber k, = 2 4 h ,  
the estimated isotropy ratio I = k, /k ,  ranges from - 400 for the maximum value 
of k, = 170 cm-l reported in figure 3 of GS, to - 45 for the minimum value of 
k, = 19 cm-l, a range in rough agreement with the I-values which characterize the 
Class B spectra of this paper. The observed 'inertial' subrange in the streamwise 
velocity spectrum is, of course, not inconsistent with the conclusion that these 
measurements are actually characteristic of vertical scale-limited turbulence, rather 
than high-Reynolds-number homogeneous isotropic turbulence. 

The more recent oceanographic literature generally fails to achieve the requirement 
of simultaneous and direct determination of e and x. Dillon & Caldwell (1980) did 
not determine e directly, while Gregg & Sanford (1980) were forced to use an e-value 
determined directly but not at the same place or time as their x determination. The 
exception is the work of Oakey (1982), who calculated both E and x directly from 
measurements made by a single instrument, hence scaled observed temperature 
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spectra without ambiguity. Although problems of sample inhomogeneity (in vertical 
profiles from the upper stratified ocean) produced rather scattered results, Oakey 
calculated an overall average value of q - 3.7, very close to the value associated with 
the present Class B spectra. At wavenumbers below the dissipative rolloff his 
dissipation spectra k2$ and those of Dillon & Caldwell (1980) both exhibit slopes 
between a value of - ++, which would correspond to  the approximate -$ slope of 
the Class A temperature spectra, and a value of + 1 ,  which would suggest that a 
temperature spectral slope of - 1 is a limiting value for buoyancy-affected temperature 
spectra. Note, however, that  this behaviour is just the opposite to that expected 
(Dillon & Caldwell 1980) if it is assumed that $ N k-’ represents the temperature 
spectrum of the most active (isotropic) cases. 

Before leaving the subject of past evidence for the existence of a viscous-convective 
subrange, i t  is worth while to emphasize that the physical model underlying 
Batchelor’s derivation of $ cc k-’ ($ 1 ) absolutely requires that any such subrange 
should occur for k > k,, not the range k < k, where such a spectral shape has been 
observed. 

Since a true inertial-convective subrange should be independent of Pr, additional 
information for this region can be obtained from the atmospheric-boundary-layer 
measurements mentioned in $ 1  (WP, CFLW, BB). It appears possible that these 
measurements, like the oceanic ones, are affected by a limit on the vertical scale of 
turbulent eddies, hence on the ‘room’ in wavenumber space for development of 
a true inertial subrange with all its consequences. For unstable and neutrally stable 
atmospheric boundary layers, an appropriate definition of an isotropy ratio would 
be 

where 1, is a vertical turbulent lengthscale which is constrained, through the 
mean-shear structure, by the presence of a solid boundary. From reported values of 
c, associated values of I ,  = 2 ~ / k ,  range from a minimum of N 0.25 ern (WP) to  - 0.66 cm (BB). Using the height z of the measurement as the maximum possible 
vertical eddy size, maximum possible isotropy ratios range from N 400 (WP, who 
made measurements at 2 m height) to - 950 (BB and CFLW, both with instruments 
at 4 m): if the actual vertical lengthscale is some fraction of z ,  these values would 
of course be less. Although not presented here, records with isotropy ratios in this 
range, between those characteristic of Class A and those characteristic of Class B, 
exhibit intermediate characteristics ; namely a decrease in (non-dimensionalized) 
low-wavenumber level (the parameter B ) ,  and the appearance of a high-wavenumber 
‘bump’, as the k-l range evolves. Both WP and CFLW observed a similar ‘bump’, 
a slight flattening of the k-8 inertial-convective subrange just before the diffusive 
high-wavenumber rolloff of the temperature spectrum. This ‘bump’ has been the 
source of some speculation (Williams & Paulson 1977; Hill 1978; Herring et al. 1982) 
since Batchelor’s theory was not expected to  apply to a low-Prandtl-number fluid 
like air. In  the present view, given the isotropy ratios estimated above, the ‘bump’ 
is probably associated with a ‘low ’ isotropy ratio. Unfortunately, neither W P  nor 
CFLW reported vertical velocity spectral shapes, so they cannot be checked for the 
existence of a similar ‘bump ’. However, measurements of the three-dimensional 
velocity field in the lower atmospheric boundary layer typically find vertical velocity 
variance 2 < 2 even in unstable conditions (CFLW report 2 - ($-i)$; see also 
Kaimal et al. 1972; Weiler & Burling 1967). Thus, by continuity alone, a typical 
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P m B 

Class A 0 - 1.55 1.25B 

,u=pe=0.5  A = A e = l  

TABLE 2. Using observed correlation coefficients p between In E and In x for the two classes and the 
theory of Van Atta (1971, 1973) (with additional parameter values ( p , p e , A , A e )  noted below), 
modified values are predicted for the slope m and ‘universal ’ scaling parameter B’ associated with 
an inertial-convective scalar spectral subrange. 

Class B +0.67 -1.67 (-4) B 

vertical scale I, must be less than a typical horizontal scale I, for the boundary-layer 
measurements. Existence of this large-scale anisotropy suggests that the associated 
temperature spectra should to some degree exhibit characteristics similar to those 
of the Class B spectra. A temperature spectrum more similar to the Class A spectra 
has been reported by BB. The low-wavenumber end of their spectrum is associated 
with a much larger value of B = 0.8 than any reported by WP or CFLW, while the 
high-wavenumber end exhibits no ‘bump ’. Although both characteristics suggest a 
larger isotropy ratio, values estimated using I, - z and values of E reported by BB 
do not greatly exceed those of the other two studies. The difference may be real, 
associated in some way with differences of actual vertical scales in boundary layers 
over a smooth mud flat (BB) or over ploughed (CFLW) or grassy (WP) fields, or it 
may be an artefact associated with the humidity sensitivity of cold wires in a marine 
environment (Schmitt, Friehe & Gibson 1978). 

From the above discussion, it is apparent that future finescale measurements in 
the atmospheric boundary layer should include vertical velocity measurements 
through dissipation scales, as well as observations over the largest possible range of 
Re, if rationalization of atmospheric and present measurements is to be tested. 

Having found that much previous observational evidence for the Batchelor 
spectrum is either inadmissible or in rough agreement with various features of the 
present observations, it is still necessary to consider whether the difference between 
Classes A and B might be caused by differences between the two classes in the degree 
of intermittency in E and x. To assess the effects of intermittency, I have used the 
theoretical framework of Van Atta (1971, 1973) for the inertial-convective subrange, 
as discussed in 1. Streamwise-velocity and temperature records were divided into 
pieces of approximate length 1,/100 and E and x were calculated by integration of 
the respective noise-corrected dissipation spectra. The correlation coefficient p 
between In E and In x, calculated for each class separately, is given in table 2, along 
with derived values of the inertial-convective subrange slope m and the constant B’ 
calculated with ,u = p, = 0.5 and A = A, = 1. It is interesting to note that p - $ for 
the Class B spectra, a value which results in exactly the classical -f slope. The value 
of p - 0 for the Class A spectra produces the correct qualitative effects of decreasing 
the spectral slope and increasing the inertial-convective range constant : however the 
latter effect falls short of the observed ratio (about 4) between the low-wavenumber 
levels of the two classes. Although there is no complete theory for the effect of 
intermittency on the dissipative ranges of the temperature spectrum it is interesting 
to note that the calculated values of the correlation coefficients also have con- 
sequences at these much higher wavenumbers. A value of p - 0 implies no correlation 
between regions of high E and regions of large x. This in turn implies that regions of 
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high x can be considered to be acted upon by the most probable rate of strain, 
i.e. by the mode rather than the mean of the rate-of-strain distribution. Since the 
mode yo is smaller than the mean ym for a skewed distribution such as that of E ,  this 
suggests that, for Class A records, the effective rate of strain ( Y ) ~  - yo Q ym; thus 
finally - -  

must have qA % 1. As p approaches the value of +$ characteristic of the Class B 
records, larger values of x have become associated with larger values of s; hence the 
effective rate of strain ( Y ) ~  has become closer to the mean : qualitatively then, qB < qA, 
in agreement with observation. 

Although the qualitative features of the intermittency effects are certainly in the 
right directions, there are problems with the underlying assumptions of the present 
theory. In particular, the assumption that the outer turbulent lengthscale L is much 
larger than the scale (here r = Z,/lOO) over which's and x are calculated, is clearly 
not satisfied for the Class B spectra: also the distribution functions of E and do not 
appear to be particularly well described as lognormal in this case. A more complete 
study of the E and x statistics is at present underway, with the aims of improving 
the description of these statistics and discovering whether the observed range of 
B-values is indeed outside a range which could be caused by intermittency . 

Finally, I would like to return to the question of the evolution of a k-' subrange 
in the temperature spectrum. This subrange occurs under conditions which cannot 
be those required by Batchelor (1959), where the least principal turbulent rate of 
strain y oc ( E / V ) ~  is constant over dimensions within which temperature variance is 
destroyed by molecular effects. However, the derivation of the k-' form can be 
considered as merely a dimensional argument employing some rate of strain ; hence 
an obvious question is whether there is some other strain rate which can be considered 
to be constant over such dimensions and which may be used in place of y in (15). 
Since energy exchange between overturning motions and internal waves is a 
characteristic of a stratified fluid, an obvious choice is N ,  the internal-wave rate of 
strain. Thus we ask if it is possible to collapse the observed k-l range (or approximation 
thereto) in the Class B spectra to a 'universal-internal-wave-strained' form by scaling 
$(k) by 2N-l and frequency by N .  This scaling, shown in figure 9, is unsuccessful, 
a result which is actually contained in the obvious success (figure 3) of the 
Kolmogoroff scaling (20) over the considerable range of I = [ ( e / v ) / P $  found within 
Class B. The success of the choice y cc (s/v)t  rather than N suggests that it is not just 
the ratio of turbulent to internal-wave rate of strain which determines the evolution 
of the temperature spectral shape (otherwise all records in Class B would have the 
same I-values), and that some type of strongly nonlinear process is still dominant. 

An alternative explanation for the observed appearance of a k-' subrange can be 
based upon a model of the 'large' eddies of the turbulent field. Previous evidence 
($3) suggests that the largest eddy which can just overturn in a mean gradient 
aT/az cc N2 has vertical scale 1, - kbl and velocity variance u2 oc ut. Let us assume 
that eddies of this size lose a large fraction of their energy and associated temperature 
variance by cascade to smaller scales within one eddy overturning time 7.  This is an 
established result for homogeneous turbulence (Batchelor & Townsend 1948; see also 
Batchelor 1959, $6.1) and would seem to have even more justification for stratified 
turbulence, since if an eddy of size 1, has just enough energy to overturn, by the time 
it has lost energy to smaller scales, it can no longer overturn at  that scale. The 
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FIGURE 9. Class B records are here non-dimensionaliaed using an internal-wave rate of strain cc N 
in place of the turbulent rate of strain oc ( e / v ) ? :  for consistency, frequency is non-dimensionalized 
by N. Values of the isotropy ratio I E k,/kb are noted for each record. This was an attempt to 
discover another relevant constant rate of strain which, when used in Batchelor's (1959) arguments, 
would predict a k-' behaviour of the temperature spectrum. This scaling is clearly unsuccessful, 
failing to collapse the k-I ranges (or approximations thereof) of the Class R spectra to  a universal 
curve. 

kinetic-energy balance (Tennekes & Lumley 1972) yields the scale relation 

,242 
- - €, 
7 

which with 7 K N-' implies u2 - s / N  11 ut,  consistent with observations. Note that 
(21) is valid provided that the ratio of potential- to kinetic-energy dissipation rate 
is smdl and/or constant. The last column of table 1 is an attempt to estimate this 
ratio: the average value of 0.28 seems sufficiently small (and constant) to validate 
(21). A simplified balance of temperature variance for scales smaller than I ,  is: 

with the understanding that the variance delivered to the cascade is eventually 
delivered to dissipation scales. Taking 8 and w as the magnitudes of typical 
temperature and vertical velocity fluctuations respectively, this equation scales as 

Using r - N-l,  
8 - w N ,  
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apart from some dimensional constants. This relation suggests that the temperature 
fluctuations may be derived from the vertical velocity fluctuations. The approach to 
a k-' range in the temperature spectrum may thus simply reflect the approach to 
a k-' range which is observed in the vertical velocity spectrum (figure 1 ) .  

This 'theory' has an implicit inconsistency however, for (22) could also be written 
as 

hence 
8 2  - x ~ - l ,  

exactly the internal-wave scaling which was just found to be unsuccessful (figure 9). 
I will shortly suggest that the balance (23) may not be correct as written, because 
the measured scalar-dissipation rate x may be supplied only partly by the scales which 
supply energy to smaller scales at rate 6. 

The above explanation also has the obvious disadvantage of merely moving the 
question, since we now must ask why the vertical velocity spectrum has a k-' range 
under vertical scale-limited conditions. Nevertheless, it  may serve the purpose of 
emphasizing that the k-' subranges that have been observed in the spectra of 
temperature fluctuations in water may (and probably do) arise for reasons quite 
different from those of Batchelor (1959). It is likely that a true viscous-convective 
subrange has not yet been observed (although with sufficient instrument resolution 
there is no reason to  suppose that it might not be observed in cases of much higher 
Pr, where there is substantial separation between k, and kB). 

Another feature which invites speculation is the appearance of a short but distinct 
k 3  subrange in the scale-limited conditions of Class B. It seems quite probable that 
this arises as the spectrum of passive scalar fluctuations advected by nearly horizontal 
wave motions. The question of what is wave and what is turbulent motion is of course 
an extremely difficult one (Stewart 1969). I am going to use a definition which is rather 
simple to state and to use conceptually, namely that turbulent motions transfer 
energy irreversibly and efficiently to ever smaller scales while wave motions do not. 
Observationally, this definition cannot be tested: I simply assume that the division 
in character occurs in wavenumber space near the wavenumber k, associated with 
the largest possibly-isotropic scale. These largest isotropic eddies (scale I ,  - kbl) can 
lose energy by one of two means, either by supporting an energy cascade to smaller 
scales or by generating internal waves: in fact they probably do both in some 
unknown combination. In the model of the k-' subrange presented above, it was 
assumed that most of the energy was transferred to turbulent motion at higher 
wavenumbers. Consider now the effect of using some part of that energy to force wave 
motions. 

For linear waves in a fluid of (locally) constant N ,  the magnitude of the wave 
vertical velocity wi is given by 

an 
N I W i (  =- 

where n is wave frequency and a = (u: + v: + w:): is the root-mean-square wave 
velocity (Philips 1977). Rearranging this relation, the frequency can be expressed as 

] ' = N [ - ]  1 
1+2a2 ' 
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where the anisotropy ratio a = I ui/wi I = 1 vi/wi I has been introduced. When the 
forcing velocity field is isotropic (Class A), a = 1 and n = N / d 3 .  Since n = N cosp, 
/3 being the angle between wavenumber vector k and vertical, this corresponds to a 
propagation direction of - 55’ from vertical. As the velocity field becomes influenced 
by buoyancy (Class B), a increases and n decreases; hence the wavenumber vector 
k approaches vertical. Thus as the anisotropy of the forcing field (the largest 
overturning eddies) increases, the forced internal-wave field approaches the limit of 
horizontal plane motion. 

Although this forced-field analysis has been in terms of linear waves, it seems likely 
that, as amplitudes grow under continued forcing, nonlinear wave transfer will 
become important. Thus it may not be unreasonable to consider results from 
two-dimensional ‘turbulence ’, which predict k-t slopes of the (horizontal) energy 
spectrum (perhaps explaining the persistence and extent of the k 3  subrange in the 
horizontal-component spectrum # 1 1 )  and of the associated passive-scalar spectrum 
(Lesieur & Herring 1985). Lesieur & Herring, as well as Holloway & Kristmannsson 
(1984), also show that, while energy is transferred to lower wavenumbers as well as 
to higher wavenumbers, the scalar variance transfer is to ever smaller scales. Thus 
in such systems the scalar variance dissipated at rate x at small scales does not all 
originate from the same scales (near kb l )  which support the energy flux to small scales. 
Such a characteristic would remove the inconsistency mentioned above in discussion 
of the k-l subrange, and help to explain why temperature spectra are considerably 
less universal in character, even a t  the smallest scales, than associated velocity 
spectra. 

7. Conclusions 
The present observational evidence suggests that the Corrsin-Oboukov-Batchelor 

description cannot be used as a universal description of the spectrum of temperature 
fluctuations in water. Reasons underlying the discrepancies between theories and 
observations may be different in the two classes presented. The more isotropic Class 
A spectra may differ because of intermittency effects, while the Class B spectra may 
be characteristic of a non-passive scalar spectrum (since the limitation of vertical 
scale, the basis of all the explanations proferred in $6 for at  least the sense of the 
Class B characteristics, arises through the stable stratification : while the temperature 
itself does not determine the density in Knight Inlet, it is everywhere linearly related 
to salinity, which does). Appropriate theory for the latter case is clearly a major 
theoretical challenge, involving as it does the subtleties of wave/turbulent dynamics 
and the directional anisotropies of the system. 

The measurements were accomplished through the technical skills of G .  Chase, 
R. Teichrob and L. Beauchemin, exercised over yearsof (oftenunsuccessful) fieldwork : 
I thank them also for their perseverance. The contributions of the pilots of PISCES 
IV and the officers and crew of the PANDORA I1 are gratefully acknowledged. 

Appendix. The cold-film measurement 
High-frequency temperature fluctuations were measured with an unheated conical 

platinum-film sensor (Thermo-Systems Model 1230T) on which the film covers the 
cone tip. The sensor (resistance 5-10 R) is used as one leg of an a.c. bridge driven 
by an amplitude-stable 11.2 kHz oscillator. The actual bridge, driver and detector 
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were placed in an underwater pressure case immediately behind the probe in order to 
minimize lead resistance, which may otherwise prove significant relative to the small 
probe resistance. Remaining circuitry was located within the manned sphere of the 
submersible. Approximately 50 mV r.m.s. voltage is applied across the probe, and 
a balancing resistor is adjusted to give an approximate bridge balance at the mean 
water temperature Tw. The bridge can then be pseudo-balanced at any temperature 
within a range fTR about Tw by summing the amplified bridge signal with a 
reference consisting of the oscillator voltage adjusted manually in both phase and 
amplitude. Output of the summing amplifier appears to be that of a balanced bridge, 
as any change in temperature of the probe produces deviations from the null point 
of the summing amplifier. Final output from the bridge is a d.c. voltage with a variable 
gain of G = 1, 2 or 4 times A,, the zero-frequency gain of the probe/bridge system. 
The frequency response of this system is A ( f ) L ( f ) ,  where A ( f )  is the response 
characteristic of the probe itself and L ( f )  is the response of a low-pass filter (3 db 
at 300 Hz) included to minimize aliasing upon digitization a t  a sample rate of 
1000 Hz. Further filtering includes a high-pass filter (3 db a t  0.5 Hz) and a gain of 
11 in the pass band) to limit the dynamic range of the high-frequency temperature 
channel, and a pre-whitening filter with zero-frequency gain of 2 and a response W ( f )  
designed to maintain the low-frequency signal-to-noise ratio to the highest measured 
frequencies despite probe rolloff. Raw power spectral densities for temperature 
$.,(f) [volts2/Hz] are thus converted to physical units and response-corrected by: 

where 

and 
S o =  A , G x l l x 2  

4.f) = A(f)L(f )  W f ) ,  Kf= 0) = 1. 

The normalized filter response functions L ( f )  and W(f) are measured directly, while 
the probe/bridge characteristics A ,  and A ( f )  are determined experimentally, as 
described in the following paragraph. No correction is made for the high-pass filter 
rolloff since this is negligible for the frequenciesf Y 1 Hz at which the cold-film signal 
is used. 

A, was measured with the probe soldered into its final configuration on PISCES, 
because probe resistance is sufficiently small that changes in lead resistance before 
the bridge affect this calibration. The probe was immersed in vigorously stirred water 
in an insulated flask and calibrated against a Hewlett-Packard quartz thermometer 
over about a 10 "C range. Even on the lowest gain setting, the temperature circuit 
traverses full scale ( f  10 V) over - 3 "C; the bridge was re-balanced each time 
full scale was reached; hence a typical calibration consisted of two or three separate 
sections. A,, is the slope of this linear calibration, obtained by averaging the slopes 
obtained by least-squares linear fits to each individual section. The field calibration 
in Knight Inlet (22  November) yielded a value of A, = 0.4084 volts/"C+0.14~o. A 
continual check on the low-frequency gain of the platinum thermometer is provided 
by simultaneous measurements from the nearby thermistor (see below). Within their 
range of overlap, spectral levels from the two thermometers always agree within their 
respective statistical uncertainties. 

The frequency response A( f )  was determined by the plume-tank method originated 
by Fabula (1968), as subsequently refined by Hughes (see appendix to Fabula 1968). 
A thermistor is tracked slowly (U,,  = 0.02 cm s-l) through the steady narrow 
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convective plume rising from a single heated wire stretched across a calibration tank. 
The thermistor is then removed and the cold-film probe is shot across the plume at 
a constant speed Up. The ratio of the power-spectral density of the platinum 
thermometer signal to that of the thermistor signal (scaled in frequency to allow for 
the different speeds at which the two probes traverse the constant domain in physical 
space) then yields A(!) A * ( f ) ,  the square of the magnitude of the (complex) platinum 
response function A ( f ) .  According to the theory of Fabula, I A ( f )  I = exp ( - (d%../D)i) 
wherefis frequency in Hz, D is the thermal diffusivity of water, and d is a lengthscale 
of the order of the velocity boundary-layer thickness over the film. A plot of In 1 A ( f )  I 
against fi yields a straight line through ( 0 , O )  with slope -[d27c/D]:, from which 
the parameter d may be determined. At a calibration speed Up = 1 m s-l com- 
parable to the mean operating speed of PISCES, this technique yielded 
d = 2.17 x cm+ 1.3 % for the probe used in the present measurements. For each 
record this value is adjusted for slight differences in mean speed, kinematic viscosity 
and thermal diffusivity between calibration (laboratory) and field conditions, using 
the Reynolds-number and Prandtl-number scalings suggested by Fabula and Hughes 
(Fabula 1968). 

Because the measured parameter d occurs in an exponential function, the 
associated error in $T increases with frequency, from 0 yo a t  f = 0 Hz to approximately 
f 1 yo at f = 10 Hz, f 3  yo at f = 100 Hz, and +6% at the Nyquist frequency of 
f = 500 Hz. Thus error in $T is due mostly to error in A, a t  low frequencies, but 
becomes dominated by error in d at the higher frequencies (wavenumbers) which 
dominate dissipation spectra for temperature variance, hence estimates of x. 

R E F E R E N C E S  

ANTONIA, R. A. & VAN ATTA, C. W. 1975 On the correlation between temperature and velocity 
dissipation fields in a heated turbulent jet. J. Fluid Mech. 67, 273288. 

BATCHELOR, G. K. 1959 Small-scale variation of convected quantities like temperature in 
turbulent fluid. J. Fluid Mech. 5 ,  113-133. 

BATCHELOR, G. K.  & TOWNSEND, A. A. 1948 Decay of isotropic turbulence in the initial period. 
Proc. R .  SOC. Lond. A 193, 539-558. 

BOSTON, N. E. J. & BURLING, R. W. 1972 An investigation of high-wavenumber temperature and 
velocity spectra in air. J. Fluid Mech. 55, 47-92. 

CHAMPAQNE, F. H., FRIEHE, C. A., LARUE, J. C. & WYNQAARD, J. C. 1977 Flux measurements, 
flux estimation techniques and fine-scale turbulence measurements in the unstable surface layer 
over land. J. Atmos. Sci. 34, 515-530. 

CORRSIN, S. 1951 On the spectrum of isotropic temperature fluctuations in isotropic turbulence. 
J. Appl. Phys. 22, 46-73. 

CRAWFORD, W. R.  1985 A comparison of lengthscales and decay times of turbulence in stably 
stratified flows. J. Fluid Mech. (submitted) 

DILLON, T. M. 1982 Vertical overturns: a comparison of Thorpe and Ozmidov length scales. J. 
Geophys. Ras. 87,960-9613. 

DILLON, T. M. & CALDWELL, D. R. 1980 The Batchelor spectrum and dissipation in the upper 
ocean. J. Geophys. Ras. 85, 1910-1916. 

DOUGHERTY, J. P. 1961 The anisotropy of turbulence at  the meteor level. J. Atmos. Terr. Phys. 
21, 210-213. 

FARMER, D. M. & SMITH, J. D. 1980 Tidal interaction of stratified flow with a sill in Knight Inlet. 
Deep-sea Res. 27A, 239-254. 

GARGETT, A. E. 1980 Data Report and calibrations of turbulence measurements in Knight Inlet, 
B.C. from the PISCES IV submersible: November 1978. Pacific Marine Sci. Rep. 80-6. Institute 
of Ocean Sciences, Patricia Bay, P.O. Box 6000, Sidney, B.C., Canada. 71 pp. 



406 A .  E .  Gargett 

GARQETT, A. E., HENDRICKS, P. J., SANFORD, T. B., OSBORN, T. R. & WILLIAMS, A .  J.  1981 A 
composite spectrum of vertical shear in the upper ocean. J .  Phys. Oceanogr. 11, 1258-1271. 

GARGETT, A. E., OSBORN, T. R. & NASMYTH, P. W. 1984 Local isotropy and the decay of 
turbulence in a stratified fluid. J .  Fluid Mech. 144, 231-280. 

GIBSON, C. H. & SCHWARZ, W. H .  1963 The universal equilibrium spectra of turbulent velocity 
and scalar fields. J .  Fluid Mech. 16, 365-384. 

GIBSON, C. H.,  STEQEN, G. R.  & MCCONNELL, S. 1970 Measurements of the universal constant in 
Kolmogoroff s Third Hypothesis for high Reynolds number turbulence. Phys. Fluids 13, 
2448-2451. 

GIBSON, C. H., STEGEN, G. R. & WILLIAMS, R. B. 1970 Statistics of the fine structure of turbulent 
velocity and temperature fields measured at high Reynolds number. J .  Fluid Mech. 41,153-167. 

GRANT, H. L., HUGHES, B. A, ,  VOGEL, W. M. & MOILLIET, A. 1968 The spectrum of temperature 
fluctuations in turbulent flow. J .  Fluid Mech. 34, 423-442. 

GRANT, H .  L., STEWART, R.  W. & MOILLIET, A. 1962 Turbulence spectra from a tidal channel. 
J .  Fluid Mech. 12, 241-263. 

GREQQ, M .  C. & SANFORD, T. B. 1980 Signatures of mixing from the Bermuda Slope, the Sargasso 
Sea and the Gulf Stream. J .  Phys. Oceanogr. 10, 105-127. 

HESKESTAD, G. 1965 A generalized Taylor hypothesis with application for high Reynolds number 
turbulent shear flows. Trans. ASME E: J .  Appl.  Mech. 87, 73.5740. 

HILL, R. J. 1978 Models of the scalar spectrum for turbulent advection. J .  Fluid Mech. 88,541-562. 
HOLLOWAY, G. & KRISTMANNSSON, S. S. 1984 Stirring and transport of tracer fields by geostrophic 

turbulence. J .  Fluid Mech. 141, 37-50. 
KAIMAL, J. C.,  WYNGAARD, J.  C., IZUMI, Y .  & COTE, 0. R. 1972 Spectral characterist,ics of 

surface-layer turbulence. Q .  J .  R. Met. Soc. 98, 563-589. 
KRAICHNAN, R. H. 1968 Small-scale structure of a scalar field convected by turbulence. Phys. 

Fluids 11, 945-953. 
KOLMOGOROFF, A. N. 1941 The local structure of turbulence in an incompressible viscous fluid 

for very large Reynolds number. C.R. Acad. Sci. USSR 30, 301-305. 
KOLMOGOROFF, A. N. 1962 A refinement of previous hypotheses concerning the local structure of 

turbulence in a viscous incompressible fluid a t  high Reynolds number. J .  Fluid Mech. 13,82-85. 
LANGE, R.  E. 1982 An experimental study of turbulence behind towed biplanar grids in a 

salt-stratified fluid. J .  Phys. Oceanogr. 12, 1506-1513. 
LESIEUR, M. & HERRING, J. 1985 Diffusion of a passive scalar in two-dimensional turbulence. J .  

Fluid Mech. Submitted. 
LUMLEY, J. L. 1965 Interpretation of time spectra measured in high intensity shear flows. Phys. 

Fluids 8, 1056-1062. 
MESTAYER, P. 1982 Local isotropy in a high-Reynolds-number turbulent boundary layer. J .  Fluid 

Mech. 125, 475-503. 
MONIN, A. S. & YAQLOM, A. M. 1975 Btatiatical Fluid Mechanics, Vol. 2. MIT Press. 874 pp. 
OAKEY, N.  S. 1982 Determination of the rate of dissipation of turbulent energy from simultaneous 

temperature and velocity shear microstructure measurements. J .  Phys. Oceanogr. 12,256-271. 
OBOUKOV, A. M. 1949 Structure of the temperature field in a turbulent flow. Izv. Akad. Nauk SSSR 

Ser. Geogr. i Geojiz. 13, 58-49. 
OBOUKOV, A. M. 1962 Some specific features of atmospheric turbulence. J .  Fluid Mech. 13,77-81. 
OZMIDOV, R. V. 1965 On the turbulent exchange in a stably stratified ocean. Izw. Atmos. & Oceanic 

Phys. Ser. 1, 853-860. 
PAQUIN, J. E. & POND, S. 1971 The determination of the Kolmogoroff constants of velocity, 

temperature and humidity fluctuations from second- and third-order structure functions. J .  
Fluid Mech. 50, 2.57-269. 

PHILLIPS, 0. M. 1977 The Dynamics of the Upper Ocean, 2nd Edn. Cambridge University Press. 
336 pp. 

SCHMITT, K. F., FRIEHE, C. A. & GIBSON, C. H .  1978 Humidity sensitivity of atmospheric 
temperature sensors by salt contamination. J .  Phys. Oceanogr. 8, 151-161. 

STEWART, R. W. 1969 Turbulence and waves in a stratified atmosphere. Radio Sci. 4, 126S1278. 



Scalar spectra in decaying stratified turbulence 407 

STILLINOER, D. C., HELLAND, K.  N.  & VAN ATTA, C. W. 1983 Experiments on the transition of 

TENNEKES, H. & LUMLEY, J. L. 1972 A First Course in Turbulence. M I T  Press. 300 pp. 
VAN ATTA, C. W. 1971 Influence of fluctuations in local dissipation rates on turbulent scalar 

characteristics in the inertial subrange. Phys. Fluids 14, 1803-1804. 
VAN ATTA, C. W. 1973 Erratum: Influence of fluctuations in local dissipation rates on turbulent 

scalar characteristics of the inertial subrange. Phys. Fluids 16, 574. 
WEILER, H.  S. & BURLINO, R. W. 1967 Direct measurements of stress and spectra of turbulence 

in the boundary layer over the sea. J. Atmos. Sci. 24, 6534364. 
WILLIAMS, R. M. & PAULSON, C. A. 1977 Microscale temperature and velocity spectra in the 

atmospheric boundary layer. J. Fluid Mech. 83, 547-567. 
WYNOAARD, J. C. & PAO, Y. H. 1971 Some measurements of the fine structure of large Reynolds 

number turbulence. In  Statistical Models and Turbulence (ed. M. Rosenblatt & C. Van Atta). 
Lecture Notes in Physics vol. 12, Springer. 

YAQLOM, A. M. 1966 The influence of fluctuations in energy dissipation on the shape of turbulence 
characteristics in the inertial interval. Sou. Phys. Dokl. 11, 26. 

homogeneous turbulence to internal waves in a stratified fluid. J. Fluid Mech. 131, 91-122. 




